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Abstract A model based on heat transport control was developed to 
describe the uptake of water on a deliquescent solid in an atmosphere 
of pure water vapor. The model assumes the presence of a saturated liquid 
film on the surface of the solid. The decrease in the vapor pressure of 
water over the surface, brought about by the colligative effect of solid 
dissolved in the liquid film, is effectively offset by the increase in tem- 
perature of the film (and the solid) caused by the heat released on con- 
densation of the water vapor. The thermal transients die out quickly and 
a steady-state analysis is valid. At steady state the temperature of the 
liquid film (and solid) is that temperature at which the vapor pressure 
of water above the saturated solution is equal to the chamber pressure. 
Consequently, water uptake occurs a t  a rate that depends on the heat flux 
away from the surface. The water uptake rate, wh, is constant a t  a given 
relative humidity and is described by an equation of the form w‘, = (C + F ) h  (RHJRH,), where C and F are conductive and radiative coeffi- 
cients, RHi the chamber relative humidity, and RHO the relative humidity 
a t  and above which continuous water uptake (deliquescence) occurs. The 
model contains no adjustable parameters and can thus be directly tested 
against experimental results. 
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The interaction of water with pharmaceutical materials 
plays a fundamental role in many aspects of drug product 
development, from synthetic design and dosage form se- 
lection to effective product packaging and drug bioavail- 
ability. The affinity that a substance has for sorbing water 
from its vapor state is generally referred to as hygroscop- 
icity. Since adsorption or condensation is not an entropi- 
cally favored process, the water-solid interaction must 
provide a sufficient enthalpic driving force if such sorption 
is to occur. Even the relatively weak binding of physi- 
sorption, for which the heat of adsorption is comparable 
to the heat of condensation, can provide this driving force 
over a large range in relative humidity. At higher relative 
humidities, multilayer adsorption can occur (1). For 
water-soluble substances, dissolution of the molecules a t  
the solid surface can occur once such multilayer adsorption 
is established. Chikazawa, Kanazawa, and others have 
shown that as few as two layers of adsorbed water can ef- 
fect hydrated ion formation at  relative humidities 3040% 
below that humidity associated with the equilibrium water 
vapor pressure over a saturated solution of the solid (2,3). 
This critical relative humidity, or RHO, characteristic of 
the solid is that point above which the adsorbed water 
assumes the character of bulk solution or condensate. 
Water activity of the condensate is depressed as a result 

of the solute present, and the phenomenon of deliques- 
cence is thereby triggered. 

Figure 1 shows a schematic representation of the deli- 
quescent process for a soluble drug particle. Suppose that 
water vapor at a bulk atmosphere relative humidity, RHi, 
adsorbs onto the solid surface of the particle. If this hu- 
midity is above the RHO of the drug, further adsorption will 
occur spontaneously and the thickness of the condensate 
film will grow. Solid will continue to dissolve and saturate 
the film, maintaining the relative humidity a t  the surface 
at  RH,. To reach equilibrium with the atmosphere at RHi, 
total dissolution and some degree of solution dilution must 
occur. To predict deliquescent behavior a priori requires 
an understanding of what fundamental factors, chemical 
and environmental, control the kinetics of the process. 
Despite the practical consequences of deliquescent hy- 
groscopic behavior, only limited investigations of sorption 
kinetics above RHO have appeared in the literature (4-B), 
all using an empirical expression to describe the phe- 
nomenon. The purpose of the present study, therefore, was 
to gain a more quantitative understanding of deliques- 
cence. 

BACKGROUND 

Consider the overall picture of what processes are operating to control 
deliquescence in the presence of an inert atmosphere such as air, where 
adsorption of vapor onto any solid surface involves the simultaneous 
transport of both mass and heat (9-16). While there may exist additional 
heat effects, these two processes are at least coupled by the heat of water 
condensation released per unit mass transported from the vapor to the 
condensed phase. This is expressed by: 

W ’ . A H = Q  (Eq. 1) 
where W’ = dW/dt  = rate of mass transport (vapor condensation), W 
is the sample weight a t  time t ,  AH is the heat generated per unit mass 
condensed, and Q is the heat flux from the surface at which condensation 
occurs. The extent to which either process limits or controls the rate of 
condensation depends on the molecular diffusivities and thermal prop- 

WATER VAPOR 
at RHi  

CONDENSES 
RHO < RHi 

Figure 1-Deliquescent sorption by a water-soluble solid particle. 
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Figure 2-Thermal and pressure gradients existing at a soluble solid 
surface covered with condensed water. 
erties of all phases in the condensing system. For hygroscopic moisture 
uptake by a solid exhibiting substantial water solubility, such as that il- 
lustrated in Fig. l, this system consists of three phases: pure, undissolved 
solid; a liquid film of condensate in which solid has dissolved; and water 
vapor in an atmosphere of inert gas. I t  follows then that there exist two 
interfaces over which transport must occur: solid-liquid and liquid-vapor. 
A closer examination of this condensation system is given in Fig. 2, in 
which: 

P, = RHi (G) (Eq. 2) 

where P, is equal to the bulk water vapor pressure in the atmosphere, 
and 

P, = RHO (2) (Eq. 3) 

where P,  is equal to the water vapor pressure in equilibrium over a sat- 
urated solution of the solid; Po represents the pressure of pure water vapor 
at  bulk atmosphere temperature, T,, and C, and T ,  represent the water 
vapor concentration and the temperature a t  the surface, respectively. 
Possible steady-state thermal and pressure gradients are indicated in 
Fig. 2. Steady-state sorption implies that  the driving force for uptake, 
whether thermal or diffusive, has reached a constant value, i.e., W is 
constant. 

The zero pressure (or concentration) gradient shown within the liquid 
film in Fig. 2 is consistent with the assumption that film saturation is 
maintained throughout steady-state moisture uptake. The likelihood 
of a zero gradient in temperature within the solid and liquid phases will 
be substantiated shortly in the discussion of non-steady-state heat 
transport. 

The thermodynamic basis for hygroscopic uptake lies in the difference 
between P, and P, in the vicinity of the saturated film surface. Water 
vapor will condense progressively on the surface as long as P, < P,. Three 
general cases exist when sorption occurs, each implying a different extent 
to which heat or mass transport controls uptake. 

Case i: Mass Transport  Control (Isothermal), A T  = 0. A P  = 
AP,,-Heat generated upon condensation is rapidly transported away 
from the liquid-vapor interface so as to render the system effectively 
isothermal throughout the course of steady-state uptake. The pressure 
difference, AP, is maximized since P, a t  T ,  is less than P, a t  T, for any 
T ,  > T,. The rate of uptake, W ,  is then proportional to AP and the 
surface area over which uptake occurs. 

Case ii: Heat  Transport  Control (Isobaric), A T  = AT,,,. A P  = 
0-Heat generated upon condensation is sufficient to maintain the liq- 
uid-vapor interface a t  a temperature T,, elevated above that of the bulk 
atmosphere maintained externally a t  T,. The temperature difference, 
AT = T. - T,, is exactly that necessary to raise P, a t  T ,  to P, a t  T ,  such 
that P, a t  T, equals P,  a t  T,. In this case, W is proportional t o  A T  by 
virtue of its explicit dependence on the heat flux as given in Eq. 1. 

Case iii: Mass-Heat Transport  in Balance, 0 < A T  < ATmax, 0 < 
A P  < A&’,.,-The gradients depicted in Fig. 2 exemplify this inter- 
mediate situation. Because neither A€‘ nor A T  is constrained to zero, 
there exists no unique hp-AT combination which can be predicted a 
priori to satisfy the requirements of steady-state condensation without 
knowledge of both the thermal and diffusive characteristics of the 
system. 

In considering the three cases given above, it is apparent that for water 
uptake from an atmosphere of pure water vapor, diffusion barriers to 

transport in the vapor phase cannot exist. In the absence of a second gas 
component, resistance to transport can arise only from the collision of 
water molecules against one another, which in itself would not generate 
a measurable gradient in water vapor pressure, i .e, “nature abhors a 
vacuum.” Consequently, the role of heat transport can be tested explicitly 
by deriving appropriate equations for case ii and testing the model with 
experimental studies using an atmosphere of pure water vapor. The 
present paper, therefore, reports a theoretical model for case ii; the second 
paper of this series (17) presents a test of this model with experimental 
studies, and the third paper describes water uptake in an inert atmo- 
sphere such as air (18). 

THEORETICAL 

The sample undergoing sorption is considered to be a compressed 
circular disk situated symmetrically near the hemispherical base of a 
cylindrical chamber, a configuration chosen for its experimental feasi- 
bility. Figure 3 illustrates the geometry that must be considered in dis- 
cussing the transport of heat within this system. Regarding the devel- 
opment of a local temperature gradient within the sample disk itself, the 
disk may be considered to  behave as a planar slab if its diameter far ex- 
ceeds its thickness. With respect to any transport external to the sample 
or the surface of its developing film, a hollow-sphere geometry will be 
assumed, consistent with the radial nature of the transport occurring 
between the disk and the surrounding chamber. Here the sample is rep- 
resented by a hypothetical inner sphere of radius r = a such that it is 
equivalent in surface area to that of the sample itself; the chamber then 
behaves as an outer sphere of radius r = b at which surface the temper- 
ature is maintained a t  T,. Presuming the disk and chamber to behave 
as concentric spheres allows a more manageable mathematical treatment 
of transport occuring in the system. The more rigorous approach of using 
disk-to-sphere or disk-to-hemisphere transport geometries is unneces- 
sarily complex for two reasons. First, the isotherm surfaces that  exist 
during steady-state heat transport from a disk to a surrounding sphere 
take on spherical shape as distance from the disk increases, behaving 
much like a hollow-sphere system when the disk diameter is small relative 
to the outside sphere. Second, and more practically, the errors associated 
with predicting transport as if within a closed sphere should have a 
constant effect for any sample tested in this configuration. Thus, the 
legitimate theoretical comparison of the hygroscopic behavior of different 
materials can be made despite these approximations. 

Upon condensation, heat is generated a t  the film surface by two pri- 
mary sources (in the absence of auxiliary reactions, e.g., hydration, etc.): 
heat of condensation, releasing AHv = 0.58 cal/mg of water condensed; 
and heat of dissolution, approximately equal to the product of the solu- 
bility, C,,, and the heat of solution, AHso1,,. For a number of nonhy- 
drating alkali halide salts, Csat.AHso~ is unlikely to  exceed an approxi- 
mate value of 0.04 cal/mg of water; for such compounds the contribution 
of the heat of dissolution to the heat generated on condensation can be 
considered negligible, such that AH = -AHv in Eq. 1. 

Chamber 
I 

Figure 3-Chamber and sample geometry; slab and holloui-sphere 
model. 
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Table I-Physical Constants for  the Transport  Model in a n  
Atmosphere of P u r e  Water Vapor 

Symbols 

a ,  cm 
b ,  cm 
M,, mg/mole 
k , cal/cm-seedeg 
a, crnz/sec 
AH, cal/mole 
A H v ,  cal/mole 
R , cal/deg.mole 
T,, O K  

u, cal/cm2-sec.deg4 
0 

Constants 

0 . 5 O  
2.00 

i.SX 104 
4.26 x 10-5 

4.13 
-10,500' 

10,500 

298 
1.987 

1.36 X 
0.95' u 

0 Theoretically arbitrary in value; these particular values have been assigned in 
this case for their consistency with an available experimental apparatus. The 
assumption is made here that the heat of condensation predominates over all other 
possible heat effects such that the latter are neglected. Film surface emissivity 
approximated by value given for pure water (20). 

Heat transport away from the surface limits the rate of condensation; 
thus, uptake depends on the thermal properties of the system. There exist 
two primary heat sinks in the system described in Fig. 3 the atmosphere 
surrounding the sample and the sample itself. Heat transport to and 
through these media can occur via three basic mechanisms: conduction 
inward through the sample or radially outward through the atmosphere; 
convection, a term used here (in the absence of forced convection) to 
designate the extra heat transport that  occurs as a result of the radially 
inward bulk flow of water vapor that feeds the condensation process; and 
radiation from the hypothetical surface r = a to surface r = b. 

A general expression for heat flux, Q, reflecting the three mechanisms 
of heat transport (19) is: 

Q = qcond Qconv qrad (Eq. 4) 

where 

(Eq. 5) 

qconv = W'C,(T, - T )  (Eq. 6) 

(Eq. 7) 

and k is the thermal conductivity of the medium, C, is the specific heat 
capacity of the medium, A is the sample surface area = 4xa2, u is the 
Stefan-Boltzmann constant, and e is the emissivity of the sample surface. 
Table I contains the physical constants of interest. 

Before discussing the quantitative implications of steady-state uptake 
for heat transport-controlled condensation, it is necessary to estimate 
the time required to establish steady-state thermal gradients within the 
system, i.e., within both the solid disk and the surrounding atmosphere. 
In doing so the assumption is made that thermal conductivity, thermal 
diffusivity, and specific heat values are independent of water vapor 
concentration and temperature. 

Non-Steady-State Heat Transport-Sample Disk-Only conduc- 
tion need be considered for heat transport within the sample disk. The 
time-dependent temperature distribution for a slab of thickness, h, whose 
parallel surfaces are subjected to a sudden change in temperature has 
already been determined in the literature (21,22). The sample disk can 
be assumed to behave according to this model if edge effects are neglected. 
Specifically, the disk region bounded by -h/2 < z < +h/2 is subjected 
to the boundary conditions that T = T,  for all z a t  t = 0 and T = T, a t  
t = f h / 2  for t > 0. The temperature profile describing one-half of the 
(symmetricai) slab for z = 0 to z = h/2 is given by (21): 

4 -  (2n + 1)xz 
h n = ~  h T = T ,  + - exp[-a(2n + 1)2x2t/h2]~os 

where a is the thermal diffusivity of the solid slab. In dimensionless terms 
this can be written (21,22): 

4 - (-1)" 
T* = 1 - ; Z O G  

in which 

z* = 4 
h/2 

(Eq. 10) 

From Eq. 9 it can be shown (21,22) that the center (z = 0) of such a slab 
reaches 97% of its equilibrium value by dimensionless time, t * = 1.5, from 
which real time can be calculated. For example, the center portion of a 
(relatively) thin solid disk of potassium chloride crystal of a = 0.056 
cm2/sec and a thickness h = 0.06 cm should attain -97% of its final 
temperature change, AT, within 0.03 sec. Thus, one could predict that 
thermal equilibrium should be rapidly established within such materials 
as the alkali halide salts. Furthermore, the heat required to raise, for 
example, a 150-mg sample of potassium chloride (C, = 0.162 cal/g.deg) 
by a AT = 5' is 0.12 cal. Since heat is released at  the disk surface at  the 
rate of 0.58 cal/mg of water vapor condensed, the role of such a disk as 
a significant heat sink over the course of substantial steady-state uptake 
can be considered negligible. 

Atmosphere-The time required to establish a steady-state temper- 
ature gradient external to the disk surface depends on the non-steady- 
state component of heat transport radially outward from the sample. 
Such heat transport through the atmosphere can occur uia all three 
mechanisms identified earlier, and indeed they all contribute to main- 
taining the steady-state gradient. If the water vapor atmosphere is con- 
sidered transparent to radiation, however, only conduction and convec- 
tion will contribute to the establishment of the gradient. Since the effect 
of convection on maintaining the steady state will be shown to be negli- 
gible in the following discussion, only conductive flux will be considered 
in the non-steady-state gradient development. 

The solution for the time-dependent temperature distribution in the 
atmosphere is readily accessible from the non-steady-state mass and heat 
transport equations developed in Appendix I. In terms of dimensionless 
variables where T* is defined in Eq. 10 and the analogous distance and 
time variables are defined as: 

r - a  
b - a  

r* = - 

and 
at t* =- 

( b  - a)? 

(Eq. 13) 

(Eq. 

the expression for T*, as taken from Eq. A8, becomes: 

r*(b/a - 1) + 1 
.*=I 

1 - r* - - 2 - 1 .  -sin nxr* exp(-n2a2t*)] (Eq. 
xn=1 n 

This function is described in Fig. 4 where II* = T*. For condensation in 
vacuum (where b - a = 1.5 cm) the time required to reach t *  = 0.5 is only 
0.28 sec. If air were present, steady-state gradients would essentially be 
attained within 5.6 sec given an estimated value of a = 0.214 cm2/sec for 
humid airl. As apparent earlier for the disk, it can be concluded that a 
steady thermal state is rapidly established within the atmosphere relative 
to the time scale of extended uptake. 

The time required for the conductive heat flux, and therefore uptake 
rate, to reach a steady-state level a t  surface r = a can be calculated using 
Eq. A21. For the example above, these lag times equal (-10.047 sec and 
(-10.94 sec in vacuum and in air, respectively. These times are consistent 
with the development of the temperature gradients as established in Fig. 
4. At surface r = b, lag times are calculated using Eq. A25, and for the 
vacuum and air systems equal 0.94 sec and 1.9 sec, respectively. 

Steady-State Heat Transport-Steady-state moisture uptake re- 
quires a constant heat flux, by virtue of the coupling in Eq. 1; this, in turn, 
implies the maintenance of a constant AT. The AT necessary to raise P, 
a t  T,  to P, a t  T,  such that it equals P ,  a t  Tc, as implied by heat transport 
control, can by first approximation be estimated by the Clausius-Cla- 

Since heat transfer will also contribute to sorption kinetics in air, and since the 
effect of air will be discussed in the third paper in this series (18A lag times in 
reaching steady state both in vacuum and air are included at  this point for com- 
parison purposes, as developed in Appendix I. This value for humid air was esti- 
mated using C values of water vapor and air weighted by mole fraction and thermal 
conductivity 4) values for water vapor and air, as taken from Table 1 and as cal- 
culated using the Lindsay and Bromley modification of the Wassiljewa equation 
(23), respectively. 
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1.or where the derivative of the radiation term vanishes under the assumption 
that the atmosphere is transparent to radiative flux. Differentiating the 
product term and rearranging leads to: 

t' 2 0.5 

\\ 

0.0 0.0 \ 0.001 0.2 0.4 0.6 0.8 1 .o 

r* 
Figure 4-Gradient in Il* at various t* values for a hollou sphere, a 
< r < b. where bla = 4.  

peyron equation as developed below: 

such that: 

In'=- RH- ( T ,  - T, )  
RHO RT,Tc (Eq. 18) 

where AHv is the heat of vaporization and R is the gas constant. Solving 
for AT, one obtains: 

RHj RT,' In - 
RH,, 

AHv - RT, In - 
RHO 

(Eq. 19) T ,  - T, = 
RHi 

For several nonhydrating alkali halide salts whose solubility and RH,, 
dependence on temperature are known (24,25),  AT as defined above is 
observed to vary from 0-15O, depending on the ratio of RH,(T,) to 
RHJT,). Use of the Clausius-Clapeyron equation to estimate these AT 
values for saturated salt solutions is subject to two sources of error: the 
small temperature dependence of the heat of vaporization of pure water 
and, more significantly, the effect of the salt and its (temperature-de- 
pendent) solubility on water activity and the heat of vaporization. Despite 
these errors, Eq. 19 predicts AT values equal to 100-110% of those ac- 
tually observed (24,25) for saturated solutions of the alkali halides. 

The evaluation of transient-state heat flux within and heat capacity 
of the sample disk suggests that the disk has a negligible effect on the 
maintenance of AT. Of primary importance, then, is the radial heat flow 
within the hollow-sphere system. From Eqs. 4-7 this steady-state flux 
can be expressed as: 

dT 
dr 

During steady-state flux: 

Q = -47rr2 - I ;  - + W'C,(T, - T )  + Aoe(TS4 - T,4) (Eq. 20) 

d a = O  
dr 

Therefore: 
dT O=47rk- r 2 -  + W'C,- 

ddr( ' dr 

(Eq. 21) 

(Eq. 22) 

(Eq. 23) 

Solving the equation by reduction of order and then applying the 
boundary conditions, T = T ,  a t  r = a and T = T ,  a t  r = b ,  one arrives a t  
the expression: 

WC, W'C, T ,  exp - 
T =  [ (47rkr )  - (likb)] - Tc  [ (2) - (%)I 

W'C, W'C, 

(Eq. 24)  
Expressed in terms of T *  as defined in Eq. 1 0  

(Eq. 25) 

The above expressions describe the steady-state temperature gradient 
within the hollow sphere as maintained by both conduction and con- 
vection. Convection is used here to denote the heat transport that occurs 
in raising the temperature of the water vapor surrounding the sample to 
T ,  just prior to its condensation. It will be shown that this convective 
component of the flux has essentially no effect on the temperature gra- 
dient given W' values of experimental magnitude. Neglecting the con- 
vective term, Eq. 22 becomes: 

O=47rk- r 2 -  d d , (  :g (Eq. 26) 

This leads to a second-order differential equation whose solution over 
the same boundary conditions is: 

or 

As expected, this is the same gradient described by Eq. (A4) as t - a. 
As the term W'C,/4?rk increases, convection is more likely to influence 
the temperature profile. Yet even a t  a relatively high uptake rate of W' 
= 2 mg/min in the vacuum system, for which the value of Cd4nk = 837 
cm.sec/g, the temperature gradient remains effectively indistinguishable 
from the steady-state profile exhibited in Fig. 4 ,  in which convection was 
neglected. Consistent with this result, it has been shown (26) that  con- 
vection contributes negligibly (<2%) to the overall steady-slate heat flux 
t'rom the surface r = a .  This flux is then given by: 

Q 1 r = o  = -47rka'- + qrad (Eq. 29) 

(Eq. 30) 

dr r = o  d T l  
= -47rka2(T, - T,)  - d:lr=o + Qrxd 

which on substituting Eqs. 7 and 28 yields: 
47rkab Q l r = a  = b-a ( T ,  - T,)  + 47ra2ue(TS4 - TC4) (Eq. 31) 

Recalling Eq. 1, the uptake rate may easily be expressed in terms of 
T ,  by utilizing the above equation. I t  is of greater interest, however, to 
determine the direct dependence of W', the dependent experimental 
variable, on RH,, the independent variable. An expression relating AT 
to RH, is given by Eq. 19. A comparable expression for A(T4) is required 
for substitution into the radiation term. From Eq. 19 the solution for T ,  
can be raised to the fourth power and simplified by dropping all terms 
contributing <2% (for RHj/RH,, ratios <2.7) to the resulting overall 
polynomial. This leads to an approximate expression for A(T4) similar 
in form to that for A E  

RHi 
RHo 

4RTcs In - 
RHj AHv - 4RT, In - 
RHO 

Ts4 - Tc4 = (Eq. 32) 
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Figure 6-Relationship between A T  and W i  for heat transport-con- 
trolled sorption (see Table I ) .  

Substituting Eqs. 19 and 32 into Eq. 31, then combining with Eq. 1, one 
arrives a t  a final equation for the dependence of W ,  or WL to indicate 
heat transport control, on RHi: 

+ 60Mw$zoe( 4RT2 -In- RH, (Eq. 33) 
RHo 

AHv - 4RTc In - 

where the factor 60M, simply converts W, from mole/sec to mg/min. 
More simply: 

(Eq. 34) 

where C and F represent the conduction and radiative terms, respectively, 
in Eq. 33 and are themselves weakly dependent on In (RHJRH,). In- 
terestingly, C and F, i .e.,  conduction and radiation, contribute almost 
equally to heat transport in an atmosphere of pure water vapor. 

Eq. 33 allows a priori prediction of heat transport-controlled uptake 
rates for condensation systems whose geometry is well defined and whose 
physical properties are known. Furthermore, the curve so predicted and 
shown in Fig. 5 represents a unique curve for Wh as a function of 
In (RHJRH,) that should be common to all materials, regardless of their 
RH,, values, given the same sample and chamber geometry. 

Since AT is a unique function of In (RHJRH,,) by virtue of the 
Clausius-Clapeyron relation and Wk is also a unique function of 
In(RHi/RH,), AT and i4'h should be interdependent if condensation is 
indeed proceeding under thermal control. Again using the parameters 
listed in Table I, the predicted graph of AT uersus Wh is given in Fig. 
6. 

SUMMARY 

A heat transport control model for water uptake by solids has been 
developed for the case of a water-soluble solid immersed in an atmosphere 
of pure water vapor. The model is based on the fact that the heat of 
condensation of water released during water uptake must be transported 
to the surroundings. In an atmosphere of pure water vapor, where dif- 
fusion does not occur, this heat flux limits the rate of condensation. 

Development of a non-steady-state model indicates that the non-steady 
time period is very short. Thus, a steady-state model is appropriate for 
time periods of pharmaceutical interest. The equations for heat transport 
(conduction, convection, and radiation) when combined with the 
Clausius-Clapeyron equation lead to an equation which predicts the 
water uptake rate with no adjustable parameters (Eq. 33). The results 
of the analysis indicate that the convection term is of minor importance 
and that conduction and radiation control heat flux to comparable de- 
grees. 

APPENDIX I: NON-STEADY STATE 

The non-steady-state solution referred to previously is 
developed herein. Since non-steady-state considerations 
are of interest both here and in subsequent papers, which 
include mass transport considerations, a general solution 
is developed for both heat and mass transport. Because of 
the analogous behavior of mass diffusion and (conductive) 
heat flow, the general parameter, II, will be used to rep- 
resent either concentration (C) or temperature (7'). Sim- 
ilarly, the symbol, r ,  will be used to represent a general 
diffusivity in place of D or a. 

The general equation for radial diffusion with a constant 
diffusion coefficient is: 

The solution to this equation describes the time depen- 
dence of either the concentration distribution for mass 
diffusion or the temperature distribution for conductive 
heat flux in which all velocity gradients associated with 
convection and viscous dissipation have been assumed to 
be equal to zero (27). For the hollow-sphere system in 
which a < r < b ,  subjected to the boundary conditions II 
= &for allr  at t = 0, II = II,at r = a,  and II = II,at r = 
b for t > 0, II is described by the function (28): 
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a n ,  + (bn, - aII,)(r - a )  n = -  
r r(b - u )  

- exp[-7n2r2t/(b - u) ' ] ]  n r ( r  - a )  
b - a  

- sin 

+ - exp[-7n2r2t/(b - a)'] 
r(b - a )  n=l  b - a  

nr(r '  - dr'] (Eq. A2) - J b  r' sin 
b - a  

Given that II* is defined as: 

(Eq. A3) 

it can be shown that the nature of Eq. A1 does not change 
if expressed in dimensionless terms, i e . ,  n* can be sub- 
stituted for n in Eq. A l .  Thus, the solution expressed by 
Eq. A2 for II is readily adapted to a solution for II* ac- 
cording to Eq. A3. Because the boundary conditions are 
redefined as II* = 1 at  r = a (n = n,) and II* = 0 a t  r = 
b (II = UC), however, the solution for 11* simplifies to: 

n r ( r  - a )  +- C -sin - e x p [ - ~ n W t / ( b  - a)2] Xrn=l {ia b - a  
(Eq. A4) 

where the fourth term vanishes when expressed in di- 
mensionless form. Then, allowing: 

7 t  
( b  - 

t* = 

and 
r - a  r* = - 
b - a  

where then 
U 1 
r 
- =  

r*(b/a - 1) + 1 

(Eq. A5) 

(Eq. A7) 

and substituting these new variables into Eq. A4, the ex- 
pression for 11* further simplifies to: 

2 m l  
r n = l  n 

n * = [  1 [1 - r *  - - -sin n r r *  r*(b/a - 1) + 1 

exp(-n%r2t*) (Eq. A8) I 
The time course to developing a steady-state II* gra- 

dient over r* can then be plotted for various t* values a t  
a given ratio of bla. Figure 4 presents such a plot for b/a 
= 4, where the incremented value of n was truncated at  n 
= 20. Discontinuities observed in the t* = 0.001 plot at II* - 0 would not have appeared if n were to have been trun- 
cated at an even higher value. It is clear from Fig. 4 that the 
gradient a t  t * = 0.5 is virtually indistinguishable from the 
t* = 03 curve. 

To determine the time required for the actual flux, and 
hence uptake rate, to reach a steady-state level, the time 

dependence of the flux must be evaluated. Total mass flux 
from the surface r = a over time t is given by: 

The term pC, must be introduced into the analoguos ex- 
pression for heat flux: 

or 

where lz is the thermal conductivity of the medium in the 
hollow sphere. Because of the introduction of the addi- 
tional parameter k and the potential confusion of its ap- 
pearance with (Y in the solution to Eq. A l l ,  the flux asso- 
ciated with heat conduction, rather than mass diffusion, 
will be solved for in the following development. 

In terms of T * ,  r ,  and t ,  where T* is defined by Eq. 10 
and is consistent with the definition of II*: 

t dT* Q t l  = -k(T,  - Tc)  1 -1 dt' (Eq. A12) 
r=u o ar r=u 

Allowing S to represent the summation term in Eq. A8 in 
which n* = T*,  

+as) (Eq.Al3)  1 1  
a b - a  dr r=a 

_ - - - -  

where: 
nn(r  - a )  

b - a  

- exp[-tun2r2t/(b - a)2])( 

+ 7 2a C {' -sin n r ( r  b - a  - a )  a exp[-an2r2t/(b - .,3)1 
r=a 

r=a r r  ,,=I n 
(Eq. A14) 

(Eq. A151 
Then: 

- zl exp[--cun'r2t'/(b - a)']dt' (Eq. A16) 

Since: 

then 

(Eq. A18) 
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Qt = k(Ts - Tc) 
m 1  

n=l n 
- C 7. exp[-an27r2t/(b - aI2] 

As t - a, the total conductive flux from surface r = a be- 
comes: 

(Eq. A20) 
revealing a lag time to steady-state flux of: 

(Eq. A21) a(b - 
3ab tlag,r=a = - 

The total heat flux at  the surface r = b over time t can 
be similarly evaluated. In this case: +* 1 (Eq.A22) U 

b(b - a )  dr r = b  

which leads to: 

(-1)n - C - - - - e x p [ - a n 2 7 r 2 t l ( b  - a ) 2 ]  
n=l n2  

As t - a, the total conductive flux to surface r = b be- 
comes: 

(Eq. A24) 
revealing a lag time to steady-state flux at the outside 
surface of: 

(b - 
6 a  tlag,r=b = (Eq. A25) 

Note that the final equations given above for total heat 
flux and the lag times to steady state a t  either surface r = 
a or r = b (Eqs. A19, A21, A23, and A25) can be readily 
converted to the analogous expressions in time-dependent 
mass flux by replacing Qt and T by Wt and C ,  respectively, 
and by replacing both a and k by D .  

a 

A 
b 

C 
C 
C P  
cs 

Csat 

C 

D 
e 
F 
h 

AH 

APPENDIX 11: GLOSSARY 

effective sample radius, radius of hypothetical 
inner sphere 

surface area 
chamber radius 
subscript, chamber 
concentration 
conduction term 
heat capacity 
surface concentration 
saturation solubility 
(vapor) diffusion coefficient 
emissivity 
radiation term 
thickness of sample disk 
heat generated or consumed per unit moisture 

condensed 

AHsoln 
AH” 

k 
M W  

P 
P C  

PO 

p s  
AP 

AP,,X 

4 cond 
4 conv 

rad 
Q 

Qt 
r 

r* 
R 

RHi 
RHO 

S 

S 
t 

t*  
t lag,r =a 

T 
T C  

Ts 
T* 
AT 

ATmax 

W 
W’ 
wh 
2 

z*  

n 
a 

n* 
(7 

r 

heat of solution 
heat of vaporization 
thermal conductivity 
molecular weight of water 
water vapor pressure 
pressure in atmosphere (chamber) 
pressure of pure water vapor a t  given temper- 

pressure at  sample surface 
pressure difference 
maximum pressure difference, taken as 

conductive heat flux 
convective heat flux 
radiative heat flux 
heat flux 
quantity of heat flow in time t 
radius 
dimensionless radius 
gas constant 
relative humidity in atmosphere 
critical relative humidity of a substance asso- 

ciated with the relative humidity in equilib- 
rium over a saturated solution of the sub- 
stance 

subscript, at the sample surface 
series term 
time 
dimensionless time variable 
lag time to steady-state flux at  surface r = a 
temperature 
temperature in chamber, i .e.,  at temperature- 

controlled wall of chamber 
temperature a t  sample surface 
dimensionless temperature variable 
temperature difference 
maximum temperature difference, taken as 

Ts - T c  
sample weight 
sorption rate 
sorption rate associated with heat transport 

control 
slab thickness 
dimensionless slab thickness 
thermal diffusivity 
general mass or heat quantity, non-steady 

state 
dimensionless non-steady-state general mass 

on heat quantity variable 
Stefan-Boltzmann constant 
diffusivity 

ature 

p c  - p s  
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Abstract The rates of water sorption as a function of relative humidity 
for water-soluble substances exhibiting deliquescence have been mea- 
sured in an atmosphere of pure water vapor. The substances studied in- 
cluded a series of alkali halides, choline halides, and sugars. The results 
were compared with a theoretical model, previously described, which 
relates the rate of water uptake to the transport of heat produced during 
the process away from the surface. Taking into account the heat of water 
vapor condensation, heat of solution, and heat of hydration, when hy- 
dration occurs, the model allows excellent a priori prediction of water 
uptake rates as a function of relative humidity. 

Keyphrases 0 Sorption-kinetics, alkali halides, choline halides, and 
sugars in a water vapor atmosphere, application of theoretical model 0 
Kinetics-moisture sorption, alkali halides, choline halides, and sugars 
in a water vapor atmosphere, application of theoretical model Deli- 
quescence-sorption kinetics, alkali halides, choline halides, and sugars 
in a water vapor atmosphere, application of theoretical model 

A quantitative treatment for the kinetics of water vapor 
sorption onto water-soluble solids which exhibit deli- 
quescence has been developed in the preceding paper (1). 
The treatment was confined to situations where the rate 
is determined solely by the kinetics of heat transfer away 
from the surface to the atmosphere surrounding the solid. 
It was assumed that the resultant film of aqueous solution 
is saturated with respect to the dissolved solid throughout 
the process. 

The model essentially says that heat generated upon 
condensation of water vapor, and any other heat change 

occurring during sorption, maintains the liquid-vapor 
interface at a temperature, T,, elevated above that of the 
bulk atmosphere, externally maintained at Tc. The water 
vapor pressure over the saturated film, therefore, rises with 
temperature until the pressure difference between surface 
and atmosphere becomes infinitesimal, and remains so 
during steady-state uptake. The ability of the system to 
transfer heat away from the surface is assumed to limit the 
sorption rate. This sorption rate, Wh‘, was shown to de- 
pend on the relative humidity of the atmosphere, RHi, and 
that in equilibrium with the saturated aqueous film around 
the solid, RH,,, as described by the equation: 
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